Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 16, 2026
-
The success of a design is not determined solely by its technical aspects. A design must work for the people who will be using it and in the context in which it will be used. Human-centered design approaches suggest strategies to remind engineering designers of the people impacted by their design decisions. While many of these strategies can be used within and across multiple design phases, during the act of sketching concepts during concept generation, there are few explicit strategies for centering people. We investigate possible impact from a simple intervention during a concept generation task through a between-subjects experiment. Working alone is a single design session, half of a group of mechanical engineering students were asked to explicitly “represent people” within their conceptual sketches. Afterwards, all students reviewed each of their concepts to answer, “Who is this idea for? Who do you imagine would use it?” Those who received the intervention requiring representation of people within concept sketches produced significantly longer reflections with greater depth compared to the control group. Adding drawings of people to sketches resulted in more consideration of the social and physical context of use and of the user's personal preferences and values. Depicting people in generated concepts substantially reduced claims a design is "for everyone,” suggesting explicit representation of potential users produced more thoughtful consideration of diversity among potential users.more » « less
-
Divergent thinking is the process of exploring many options and perspectives and is a key part of effective and inclusive engineering outcomes. In engineering education, divergent exploration is often applied within idea generation; however, many other stages in engineering projects may benefit from divergent exploration, such as defining problems, identifying stakeholders, selecting problem solving approaches, and understanding potential implications of engineering decisions. Professional engineers often struggle to identify and manage diverse perspectives, and little is known about the practice of divergent exploration in engineering projects. To investigate, we interviewed a mechanical engineer about her exploration practices in a past professional project. From her striking examples of divergent thinking and barriers to its practice, we constructed a narrative-based educational tool for students, educators, and practitioners. The engineer’s firsthand experiences demonstrate that to think divergently, engineers must understand system constraints, explore widely, seek information from many sources, take risks, seek varied perspectives, and explore multiple methods to solve problems.more » « less
An official website of the United States government

Full Text Available